10 research outputs found

    Coherent dynamics in long fluxonium qubits

    Full text link
    We analyze the coherent dynamics of a fluxonium device (Manucharyan et al 2009 Science 326 113) formed by a superconducting ring of Josephson junctions in which strong quantum phase fluctuations are localized exclusively on a single weak element. In such a system, quantum phase tunnelling by 2π2\pi occurring at the weak element couples the states of the ring with supercurrents circulating in opposite directions, while the rest of the ring provides an intrinsic electromagnetic environment of the qubit. Taking into account the capacitive coupling between nearest neighbors and the capacitance to the ground, we show that the homogeneous part of the ring can sustain electrodynamic modes which couple to the two levels of the flux qubit. In particular, when the number of Josephson junctions is increased, several low-energy modes can have frequencies lower than the qubit frequency. This gives rise to a quasiperiodic dynamics, which manifests itself as a decay of oscillations between the two counterpropagating current states at short times, followed by oscillation-like revivals at later times. We analyze how the system approaches such a dynamics as the ring's length is increased and discuss possible experimental implications of this non-adiabatic regime.Comment: 20 pages, 8 figures (new, substantially revised version

    Full counting statistics of a chaotic cavity with asymmetric leads

    Full text link
    We study the statistics of charge transport in a chaotic cavity attached to external reservoirs by two openings of different size which transmit non-equal number of quantum channels. An exact formula for the cumulant generating function has been derived by means of the Keldysh-Green function technique within the circuit theory of mesoscopic transport. The derived formula determines the full counting statistics of charge transport, i.e., the probability distribution and all-order cumulants of current noise. It is found that, for asymmetric cavities, in contrast to other mesoscopic systems, the third-order cumulant changes the sign at high biases. This effect is attributed to the skewness of the distribution of transmission eigenvalues with respect to forward/backward scattering. For a symmetric cavity we find that the third cumulant approaches a voltage-independent constant proportional to the temperature and the number of quantum channels in the leads.Comment: new section on probability distribution and new references adde

    Clar Sextet Analysis of Triangular, Rectangular and Honeycomb Graphene Antidot Lattices

    Full text link
    Pristine graphene is a semimetal and thus does not have a band gap. By making a nanometer scale periodic array of holes in the graphene sheet a band gap may form; the size of the gap is controllable by adjusting the parameters of the lattice. The hole diameter, hole geometry, lattice geometry and the separation of the holes are parameters that all play an important role in determining the size of the band gap, which, for technological applications, should be at least of the order of tenths of an eV. We investigate four different hole configurations: the rectangular, the triangular, the rotated triangular and the honeycomb lattice. It is found that the lattice geometry plays a crucial role for size of the band gap: the triangular arrangement displays always a sizable gap, while for the other types only particular hole separations lead to a large gap. This observation is explained using Clar sextet theory, and we find that a sufficient condition for a large gap is that the number of sextets exceeds one third of the total number of hexagons in the unit cell. Furthermore, we investigate non-isosceles triangular structures to probe the sensitivity of the gap in triangular lattices to small changes in geometry

    Voltage and temperature dependence of current noise in double-barrier normal-superconducting structures

    No full text
    We study theoretically the current-noise energy (voltage bias and temperature) dependence for a N-N'-S structure, where N and S stand for bulk normal metal and superconductor, respectively, and N' for a short diffusive normal metal. Using quasiclassical theory of current fluctuations we determine the noise for arbitrary distributions of channel transparencies on both junctions. The differential Fano factor turns out to depend on both junction transparencies and the ratio of the two conductances. We discuss analytically the coherent and incoherent regimes and the case when one of the two conductances dominates the other one. Measurement of differential conductance and noise can be used to probe the channel distribution of the interfaces. We discuss recent experiments in the light of our results. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 200673.23.-b Electronic transport in mesoscopic systems, 72.70.+m Noise processes and phenomena, 74.45.+c Proximity effects; Andreev effect; SN and SNS junctions, 74.40.+k Fluctuations (noise, chaos, nonequilibrium sc, localization, etc.) ,
    corecore